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In this thesis I investigate the possibility of electrically detecting partial discharges in
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Chapter 1

Introduction

The goal of this work is to design a system capable of detecting partial discharges. It

must fulfil the requirements set later on in this chapter. The basic structure of the

system which will measure partial discharges is as follows: a current sensor is used

to produce the initial signal, which is then processed by an analog amplifier/filter.

The output of the filter is then processed by a digitizer. The object of the thesis is to

select a current sensor and design the analog amplifier/filter. The information needed

to make this design possible are the characteristics of the available current sensors

and the specifications for the performance of the overall system. This information is

presented in this introductory chapter.

Before discussing the specifications on the performance of the overall system, I

present some more information on the nature of partial discharges.

1.1 Partial Discharges

Partial Discharges (PDs) are small events which occur in insulation in the presence of

high electric fields. They constitute a sudden redistribution of charge within, or on the

surface of, the insulator. A change in the established pattern of PDs for a particular

apparatus can signal change in its operation, which may be due to deterioration,

overloading, etc.

PDs produce electrical, acoustic and light emission, each of which may be used for
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their detection. The electrical manifestation of PDs is a pulse of current on the line.

Typical values for the pulse area are in the picocoulomb range, and for the duration

– a few to a few hundred nanoseconds.

The major difficulty with the electrical detection of PDs is the small magnitude

of the current pulse as compared to the ambient current and noise on the line, which

may be orders of magnitude larger. However, most of the noise energy is in the

low frequency range (e.g. 60 Hz), whereas their energy is primarily in the higher

frequencies, since PDs are short events. This distinction makes it possible to extract

the useful information. In addition to the low-frequency rejection required of the

system in order to accomplish this, filtering of specific dominant frequencies (such as

60 Hz) may further reduce the background noise.

There are other methods of measuring PDs, which do not provide on-line real-

time results. An example is the volumetric measurement of gas produced by PDs in

transformer oil. However, they typically require interruptions of the operation and

time delays. This makes the availability of an on-line electrical method very valuable.

1.2 Specifications

Depending on the particular application, the importance of the different competing

specifications of the system vary. The sensitivity of the system is one of the most

important considerations, as it determines the minimum detectable current pulse. The

maximum repetition rate is the maximum frequency at which partial discharges may

be registered. Since the system response to a pulse of current is a waveform of certain

duration, if PDs happen too close in time to each other, the individual responses may

interfere and cause errors. There are other restrictions on the waveform, imposed

by what kind of wave shapes are convenient to digitize. The system must also be

capable of rejecting non-PD signals and external noise. Each of these specifications

are discussed in more detail in this section. The requirements for this project imposed

by these different specifications are also stated there.

Another characteristic of the system is how it responds to a very large signal at

10



the input. It is important that it be able to quickly recover from such a large event

and not lose its ability to detect partial discharges for too long.

1.2.1 Sensitivity

The sensitivity of the system is characterized by the minimum detectable signal. It

has units of charge, i.e. current pulse area. This quantity is determined by the

noise characteristics of the system. In order to give a quantitative measure to the

sensitivity of the system, I define the minimum detectable signal, (QC), to be the

amount of charge which will produce a response at the output whose peak value is

equal to the RMS value of thermal noise generated in the system.

A signal of this magnitude, of course, will not be detectable at the output, which

can be seen from the definition of QC . Only a charge a few (maybe ten) times larger

than the minimum detectable signal will be visible.

Since most partial discharges are in the picocoulomb range, the system must have

a QC of 100 − 200fC at most, if it is to detect a pulse of one picocoulomb. This is

the criterion I use in the design developed in this thesis.

The wave shape of the response also has an effect on the sensitivity. The digitizer

measures the first peak of the response. Therefore energy would be wasted in any

subsequent peaks. The most efficient waveform from this perspective would be one

in which all of the energy is concentrated in the first peak.

1.2.2 Repetition Rate

The response to a partial discharge has a specific duration. This duration determines

the minimum period between individual events, for which they would not interfere to

cause errors in the measurement.

In order to relate the repetition rate to the dominant time constant of the response,

I consider a simple first-order system, whose system function consists of a single pole

of time constant τ :
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T/τ 2.39 3.04 4.61 9.21
E 0.1 0.05 0.01 0.0001

% Error 10% 5% 1% 0.01%

Table 1.1: Percent Error for Different Repetition Rates

F (s) =
1

1 + τs
(1.1)

The impulse response of this system is a simple step and decay:

f(t) = e−
t
τ (1.2)

Assuming that the system is driven by impulses at regular time intervals T , at

time t = 0 the error of tails accumulated from previous events is:

E = e−
T
τ + e−

2T
τ + e−

3T
τ + ... (1.3)

This is a geometric progression, whose sum is given by:

E =
e−

T
τ

1 − e−
T
τ

(1.4)

Figure 1-1 shows how this error depends on T
τ
. Table 1.1 lists a few important

points on the graph, which correspond to error values of 10%, 5%, 1% and 0.01%.

This data comes to show that a ratio of 5 would make errors negligible. The system

must be able to handle repetition rates of at least 100kHz. For this rate T = 10µs,

i.e. τ = 2µs. I shall aim to design a system centered around this time constant.

1.2.3 Digitizer

Since the system is driven by an impulse, the amplitude of the output will be pro-

portional to the area of the current pulse, i.e. to the amount of charge.

In order to make the waveform convenient to digitize, it must fulfil the following

requirements:
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Figure 1-1: Cumulative Error vs Repetition Rate

• The maximum of the output waveform must not occur at, or very close to, its

beginning, because of the problem of triggering. If the digitizer triggers on the

peak itself, it may not register it properly. This rules out anything that has a

step or impulse as part of its response. It is preferable to have a smooth rise.

• The peak must be smooth and wide. Little time should be wasted in what

follows the peak, because it yields no useful information. Therefore a waveform

with a higher ratio of pulse width to total duration is more suitable. Later in

this chapter I give a name to this ratio, ‘efficiency’, and illustrate its values with

examples. This quantity is used to quantify the quality of the waveform.

• The response should integrate to zero, i.e. the total area above and below

zero should be the same. The reason for this last requirement is that since

the system is linear, any system whose impulse response does not integrate to

zero, has at infinity a non-zero step response, and therefore lets DC and low

frequencies through. This is very undesirable from the point of view of rejecting

13
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low-frequency noise, as discussed in section 1.1.

The gaussian pulse, discussed in more detail in section 1.3, satisfies the first two

requirements quite well. However, since it lies entirely above zero, it is not applicable

in this case. Its first derivative is a good choice.

Section 1.3 presents some ideas on how to achieve a system with an ‘efficient’

impulse response.

1.2.4 Non-PD Signal Rejection (External Noise)

This is noise present on the line together with the PD transients. It may or may

not be more significant than the thermal noise. However, ambient power line noise

is typically much larger than the PD current pulses, and therefore may need special

filtering. In this thesis, I present only a qualitative discussion of external noise, since

it is a characteristic of the particular application.

1.2.5 Baseline Restoration

The ORTEC Gaussian amplifiers discussed in the next section have a piece of circuitry

whose purpose is to help the system recover form a large input pulse. A similar idea

may be employed in this case, but I consider further development of this idea to be

beyond the scope of this work.

1.3 Counting Particles: the ORTEC Equipment

In their basic nature, the problem of detecting PDs and that of counting high energy

particles in Nuclear Physics are very similar. Typically, the latter uses a photomul-

tiplier tube or a semiconductor detector, which respond to a particle with a pulse

of charge at its output. It then enters an integrating network at the preamplifier,

which responds with a first-order step and decay. When fed to one of the gaussian

amplifiers, this signal results in a gaussian pulse at the output. See figure 1-2.
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Figure 1-2: Counting Particles in Nuclear Physics

The similarity lies in the fact that both systems respond to a pulse of charge,

and the output of both are processed by a digitizer. However, the nature of this

pulse of charge is very different. In the Nuclear Physics problem there is no need for

low-frequency rejection, since the input is indeed limited to impulses of current and

continuous current is absent by the very nature of the source. In the PD problem,

on the other hand, continuous current is not only present, but it is much larger than

the pulses of interest. Therefore this must be taken in consideration when adapting

the transfer function.

1.3.1 The Gaussian Pulse

The gaussian pulse, (or simply “the gaussian”), also known as the bell-shaped curve,

has the following mathematical formula:

f(t) = e−
t2

2 (1.5)

Its derivative is:

f(t) = −te−
t2

2 (1.6)
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Figure 1-3: The Gaussian Pulse and Its Derivative

Both can be seen on figure 1-31.

The Fourier Transform of the gaussian in time is also a gaussian, centered at the

origin. This means that a system, whose impulse response is a gaussian2, has its

highest response at DC. As discussed in the previous section, this kind of a system

is of no use for PD detection. If the transform of a time-shifted gaussian is still a

gaussian (with a linear phase-shift), which function in the time domain would yield a

frequency-shifted gaussian in the frequency domain? Such a system would be band-

limited, with a very low response at DC. Unfortunately, this is a gaussian-enveloped

sinusoid, e−
t2

2 cos(t), which is unsuitable.

In the design of the ORTEC equipment, the gaussian-like response was considered

desirable because of its good signal-vs-noise characteristics. Unfortunately, the trans-

fer function that implements it, 1
(1+τs)n , requires that n be infinite, i.e. an infinity of

poles. In the ORTEC gaussian amplifiers, the system function used only resembles a

true gaussian, but it is implemented with only four poles.

1The software used to develop this graph is discussed in the appendix
2Shifted in time, of course, because the impulse response of a real system must be zero for t < 0
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Figure 1-4: PZ-Diagram for the 113/575 Gaussian Amplifier

1.3.2 The ORTEC Gaussian Amplifiers

In this discussion I also include the 113 preamplifier. The output of the photomulti-

plier tube goes into the 113 preamplifier, before it connects to the gaussian amplifier.

The transfer function of the 113 preamplifier has only a single pole and its impulse

response is a first order step-and-decay. The gaussian amplifiers use a pole-zero can-

cellation technique to cancel the pole of the preamplifier and to introduce a new pole

at a desired frequency. When referring to the properties of the gaussian amplifiers,

I shall refer to the properties of the whole system, including the 113 preamplifier,

identified as the 113/575 amplifier.

The 113/575 Amplifier’s pole-zero diagram and characteristic responses can be

seen on figures 1-4 and 1-5 respectively 3. Its transfer function is:

Vout

Iin

=
K

(1 + τs)(1 + τ
3
s)(s + 1−0.8j

τ
)(s + 1+0.8j

τ
)

(1.7)

τ = 0.5, 1.5, 3.0µs

One can see that the impulse response of this amplifier very closely resembles

a gaussian pulse. The step response on the other hand confirms that this system

does not eliminate low frequencies. The model 450 amplifier differs from the 575 only

3The software used to develop this and subsequent similar graphs is discussed in the appendix
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Figure 1-5: Step and Impulse Responses of the 113/575 Gaussian Amplifier

slightly. Its complex pole pair is a little less damped. The design of that amplifier also

allows for a wide range of time constants. What is important in this case, however,

are the system characteristics, shown in its transfer function:

Vout

Iin
=

K

(1 + τs)(1 + τ
3
s)(s + 1−j

τ
)(s + 1+j

τ
)

(1.8)

As discussed earlier, this transfer function can be used as a model for the devel-

opment of a PD system, with the introduction of a zero at the origin, i.e. a perfect

differentiation, which would introduce low frequency roll-off. Adding the zero is nec-

essary, since it is inherent in the process of current detection and is present in the

transfer functions of all current sensors. The low-frequency roll-off also aids in the

elimination of ambient 60Hz.

The pole-zero configuration that may be considered a good choice at this point

is the one shown on figure 1-6, with the transfer function shown below. Its step and

impulse responses are shown on figure 1-7. They compare well to the true gaussians

on figure 1-3.
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Figure 1-6: Model PZ-Diagram

Vout

Iin
=

Ks

(s + p)(s + 3p)[s + p(1 − j)][s + p(1 + j)]
(1.9)

p =
1

τ

1.3.3 Dependence of the Efficiency on Deviations in the Pole-

Zero Configuration

In addition to the visual estimation of the effectiveness of a certain pole position, it is

desirable to define a quantitative measure to represent this property. A “good” pole

position is one that will give rise to a response, which smoothly rises to its peak value,

has a wide peak, and then quickly returns to zero. Thus the following definition of

“Efficiency”:

E =
width

duration
(1.10)

“Duration” is the time period from the beginning of the pulse to the point where

it has decreased to e−5 or ≈ 1
150

of its peak value. One must remember, that in a

sense the efficiency is quite arbitrary in its definition and must not be taken as the

sole criterion. “Width” is the time span between the two points on either side of the

peak when the value is 1√
2

of the peak.

In order to get a feel for the range of values E takes on, let us see what the
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Figure 1-7: Step and Impulse Responses of the Model System

efficiencies of certain known wave shapes are. Following the definitions above, it is

easy to find that the efficiency of the gaussian is:

EGAUSS =
2 ×√

ln2

2 ×√
10

= 0.263

This is not as high as some other wave shapes discussed below. This is because

although the gaussian quickly returns to zero, it has a slow rise time.

On figure 1-7 one can see that the efficiency of the ideal response developed there

is 0.135. It is interesting to find out how deviations from this pole-zero configuration

affect the efficiency of the waveform. First I move the central real pole to positions

higher and lower. Table 1.2 lists the calculated values of the efficiencies for a few

cases. The calculation of the values listed in this table is done numerically with the

help of the software outlined in the appendix.

This data is plotted on figure 1-8. It is clear from these calculations that proper

positioning of the pole is essential. The reason the efficiency drops quickly with small

deviations from the central position is that the system is critically damped for a

response of short duration. Moving the pole causes the system to be overdamped or
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Pole Efficiency with no Efficiency with a
Location Zero Zero at the Origin

−0.6p 0.156 0.095
−0.8p 0.217 0.129
−p 0.288 0.135
−1.2p 0.237 0.115
−1.4p 0.225 0.108

Table 1.2: Efficiency vs Central Pole Position

underdamped, leading to a long tail in the former case and ringing in the latter.

I consider moving the fast pole to be not as essential as the central pole, because it

is the latter which determined the long-term behaviour. However, another important

degree of freedom is the damping ratio of the complex pole pair. It is very clear that

lowering the damping ratio will lead to ringing and raising it – to a long tail.

Chapter 3 is dedicated to finding out the most suitable and efficient waveform. It

is clear that the highest values of the efficiency occur when the system is critically

damped.

1.4 Current Sensors

The current sensors I use in this work are coils wound in a way to implement a

current transformer with the power line. Specifically, I use current sensors known as

Rogowski Coils. The structure of one such coil is shown on figure 1-9. In addition to

the winding, these current sensors include lumped elements. There are two different

types of such coils available to me: with a resistor and a capacitor in series with the

winding, (Series-RC Sensors), and with a resistor and a capacitor in parallel with the

winding, (Parallel-RC Sensors).

These two kinds of Rogowski Coils have different circuit models, transfer functions

and time-domain responses. In this thesis I take the circuit models as given, and use

them to design the subsequent stages of the system.
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Figure 1-8: Efficiency vs Central Pole Position

Figure 1-9: Structure of the Rogowski Coils
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Figure 1-10: Circuit Model for the Series-RC Current Sensors

Im

0
Re

Figure 1-11: Pole-Zero Diagram for the Series-RC Current Sensors

1.4.1 Series-RC Sensors

Figure 1-10 shows the circuit model for this type of sensors, and table 1.3 shows the

specific values in the circuit model, characteristic to each type of sensor in this class.

Figure 1-11 shows the pole-zero diagram. The system function is:

Vout

Iin
=

KRs(s + 1
RC

)

s2 + R
L
s + 1

LC

(1.11)

If this transfer function is compared to the model one, equation 1.9, we can see

that the zero at the origin is available. The series-RC sensors also have a pair of

poles which are complex for the values in table 1.3. This pair of poles can potentially
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Type K L R C
PPD-102X 0.33 33µH 100Ω 3.6nF
PPD-103X 0.26 19µH 58Ω 6.6nF
PPD-103XT 0.19 36µH 100Ω 3.6nF

Table 1.3: Circuit Model Values for the Series-RC Sensors

K Iin L

C

R

Vout

R L

CL

Figure 1-12: Circuit Model of a Loaded Series-RC Sensor

serve as a basis to build the desired system function, because for the available sensors

these poles are less damped than required and can therefore be damped to the right

amount by external loading. The second zero is not present in the model picture. It

is not clear at this stage how it will affect the overall behaviour of the system.

Let us see how the system function changes when this sensor is loaded with a

resistance, a capacitance, or both. The new circuit model is shown on figure 1-12.

When only a capacitive load is present, (RL = ∞), the system function is:

Vout

Iin

=
K

CL

· s(s + 1
RC

)

s3 + ( 1
RCL

+ 1
RC

)s2 + 1
LCL

s + 1
LRCCL

(1.12)

A capacitor in parallel adds another real pole at high frequencies and tends to

move the complex pair in a way to make it less damped and with a lower natural

frequency. When both RL and CL are present, the effect of RL is to damp that

complex pole pair. The transfer function becomes:
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Figure 1-13: Pole-Zero Diagram for the PPD-102X Sensor

Vout

Iin

=
K

CL

· s(s + 1
RC

)

s3 + ( 1
RCL

+ 1
RC

+ 1
RLCL

)s2 + ( 1
LCL

+ 1
RRLCCL

)s + 1
LRCCL

(1.13)

Since the PPD-102X sensor proved to be the most appropriate for the particular

application, here I include its characteristics separately. Its pole-zero diagram is

shown on figure 1-13 and its step response – on figure 1-14. Figure 1-15 shows an

oscilloscope measurement of this step response, which was taken with the setup shown

on figure 1-164.

1.4.2 Parallel-RC Sensors

Figure 1-17 shows the circuit model for this type of sensors, and table 1.4 shows the

specific values in the circuit model, characteristic to each type of sensor in this class.

Figure 1-18 shows the pole-zero diagram. The system function is:

Vout

Iin
=

K

C
· s

s2 + 1
RC

s + 1
LC

(1.14)

4More about the hardware used may be found in the appendix
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Figure 1-14: Calculated Unloaded Step Response of the PPD-102X Sensor

Trace Description Units

Top Output 100mV/smdiv
(unloaded)

Bottom Unused

Sweep 200ns/smdiv

Figure 1-15: Measured Unloaded Step Response of the PPD-102X Sensor

Type K L R C
PPD-101X 0.023 7.5mH 840Ω 150pF
PPD-101 0.025 1.3mH 420Ω 150pF
PPD-101BT 0.022 3.0mH 725Ω 170pF
PPD-100B 0.022 1.1mH 730Ω 160pF

Table 1.4: Circuit Model Values for the Parallel-RC Sensors
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Figure 1-16: Experimental Setup for the Measurement on Figure 1-15

K Iin L R C

Vout

Figure 1-17: Circuit Model for the Parallel-RC Current Sensors

Im

0
Re

Figure 1-18: Pole-Zero Diagram for the Parallel-RC Current Sensors
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Figure 1-19: Pole-Zero Diagram for the PPD-101X Sensor

This kind of current sensors’ pole-zero configuration can be used as a basis in the

building of the model system too. For the values shown in table 1.4, the damping

ratio of the two poles is greater than one. We could have the model PZ-configuration

be centered around the slower pole. The zero at the origin falls in with the model,

and in this case there is no other zero to consider.

Because of their parallel structure, any kind of capacitive or resistive loading

simply adds to their characteristic values. This kind of loading would not change the

character of the transfer function, only its parameters.

Figure 1-19 shows the pole-zero diagram of a typical representative of this type

of sensors – PPD101X. Its calculated step response is shown on figure 1-20 and the

oscilloscope measurement, taken with the same setup as the response of PPD102X,

on figure 1-21.

These are the resources available to me in the development of this thesis work.

The information presented in this introductory chapter, and in particular the circuit

models and the circuit model values for the current sensors, is taken as given. The

following chapters do not discuss or research the validity of these models.
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Figure 1-20: Calculated Unloaded Step Response of the PPD-101X Sensor

Trace Description Units

Top Output 100mV/smdiv
(unloaded)

Bottom Drive 500mV/smdiv
into 50Ω

Sweep 100ns/smdiv

Figure 1-21: Measured Unloaded Step Response of the PPD-102X Sensor
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Chapter 2

Thermal Noise Limits

The most important consideration in doing the design at the front end of the system

is minimizing the thermal noise generated by resistors before the first gain stage.

Such resistors are present in both kinds of current sensors. The amount of thermal

noise at the output of the system depends on the value of the noisy resistor, on the

bandwidth of the system and on its gain within this bandwidth. The last two factors

are affected by the size of the integrating capacitors, by the size of the load impedance

of the sensor, etc. All of these factors are interrelated in a way that would require

more detailed analysis to establish the best strategy at hand.

In general, we would like to capture as much of the energy of the pulse as possible.

The pulse of current on the line generates a pulse of current in the current source

in the circuit model of the sensor. Unless there is a capacitance in parallel with the

winding to integrate the impulse of current to a step of voltage, the voltage output

of the sensor will be dominated by an impulse of voltage, as it appears across the

resistance. (See figures 1-10 and 1-17.) Since the gain stage loading the sensor is

an active circuit, it’s band-limited, and therefore will lose some of the energy of this

voltage pulse, due to saturation and limited rise time.

If, on the other hand, a load capacitance is present, the impulse of current will

generate a step of voltage across this capacitance, and much more of the energy of

the pulse will be captured by the active circuit. This is the argument behind the need

for a load capacitance. The parallel-RC sensors already have such capacitance, but
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the other kind don’t.

2.1 Integration

The load capacitance discussed above acts as an integration. Even if there is no load

capacitance, integration is necessary in order to achieve the model transfer function,

no matter which kind of sensor is used. Integration tends to limit the bandwidth at

the high frequency end.

For a first-order RC-network, which consists of a resistor (R) and a capacitor (C),

the RMS value of the noise depends only on the capacitance, as can be seen in the

formula below:

v2
RMS = 4kTR∆f = 4kTR

1

2πRC
=

2kT

πC
(2.1)

k = 1.38 × 10−23[J/K] Boltzman’s constant

T [K] Absolute temperature

∆f [Hz] Bandwidth

Does it make a difference then whether we integrate before or after the first gain

stage? This is a reasonable question, because integration after the first gain stage

allows us to use a different resistance, whose thermal noise would not be significant,

since it is after the gain. In other words, does this additional degree of freedom allow

us to control the bandwidth and the signal-to-noise ratio independently? This is the

question which this section answers.

First let us consider a system based on a series-RC sensor, loaded with a capaci-

tance and a noiseless resistance (the input impedance of an active stage). The thermal

noise source is represented by a voltage source in series with the noisy resistor. The

circuit diagram may be seen on figure 2-1. This system is characterized by its two

transfer functions: signal and noise (see equation 1.13):
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Vout

R L

CL
VN

+

-

Figure 2-1: Circuit Diagram of a System Based on a Series-RC Sensor

Vout

Iin

=
K

CL

· s(s + 1
RC

)

s3 + ( 1
RCL

+ 1
RC

+ 1
RLCL

)s2 + ( 1
LCL

+ 1
RRLCCL

)s + 1
LRCCL

(2.2)

Vout

VN

=
1

RCL

· s2

s3 + ( 1
RCL

+ 1
RC

+ 1
RLCL

)s2 + ( 1
LCL

+ 1
RRLCCL

)s + 1
LRCCL

(2.3)

When comparing these two transfer functions, there are a few important features

to notice: since it is a linear system, the two transfer functions have identical sets of

poles; the zeros of the transfer functions do not depend on the value (or on the very

presence) of CL; the Bode (DC) gains of the two functions have the same dependence

on CL.

Now suppose that we build a hypothetical system, which has no CL at the front

end, but which has exactly the same signal transfer function, in which the extra

pole needed is added at a subsequent filter stage. This hypothetical system will have

values of R and C identical with the prototype, so that the noise generation and the

position of the zero are not changed. It is possible to create it, because L and RL give

us the two degrees of freedom necessary to move the two poles of the hypothetical
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system to coincide with the poles of the CL-loaded prototype, and additional filtering

after the first gain (buffer) stage will help match the transfer function.

The question is, what is the noise transfer function and generation of this hypo-

thetical system, as compared to the prototype, and is there any advantage to the new

scheme? The answer is that this hypothetical system will have exactly the same noise

picture, because:

• v2
N,RMS depends only on R and ∆f . By the definition of the hypothetical system,

both of these are identical.

• The zeros of the two transfer functions do not move with CL, whereas the

poles are the same, since the signal and the noise transfer functions always

have the same set of poles. This means that the noise transfer function of the

hypothetical system has the same pole-zero configuration as that of the original

system.

• The Bode gain coefficients of the two types of transfer functions have the same

dependence on CL. This means that if the two signal transfer functions have

the same value (by definition), then the two noise transfer functions have the

same Bode gain too.

This means that the two noise transfer functions are the same and the noise source

is the same, i.e. there is no advantage to integrating after the first gain stage.

Since the zeros and the Bode gains do not depend on RL, one may use the same

arguments as presented above to conclude that the level of thermal noise generated in

the current sensor does not depend on the load impedance, if the same overall transfer

function is used. The load impedance itself is a source of noise, but it represents noise

generated in the active amplifier and is not part of the front-end design.

On the other hand, if we compare the Bode gains of the signal and the noise

transfer functions, it becomes clear that a larger R proportionately increases the

useful signal, as compared to the noise. The RMS value of the noise source also

increases with R, but only as its square root. This means that if we had control
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Figure 2-2: First-Order RC System Circuit Diagram

over the value of R, we would like it to be as large as possible. This conclusion

was intuitively obvious from the beginning, since a noiseless system would include

no resistance at the front end. If we were to design a current sensor with a high

sensitivity, we would use only a winding with a capacitance in parallel. The damping

of this LC-system would be controlled by the load impedance. This kind of a system

would have no thermal noise generated at the front end, and would consequently have

a much higher sensitivity.

2.2 Bandwidth

It would be interesting to see how integration, characterized by its bandwidth, affects

the signal-to-noise ratio. Let us first consider a simple example of a first-order RC

system and see what affects this ratio and how. The circuit diagram for this example

is shown on figure 2-2. The diagram shows both the signal source, (a current source),

and the noise source, (a voltage source in series with the noisy resistor).

The signal transfer function is:

Vout

Iin
=

K

C
· 1

s + 1
RC

(2.4)

In order to calculate the voltage output for a current pulse of unit area, (1 Coulomb),

we must take the inverse Laplace transform of equation 2.4, which is:
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v(t) =
K

C
e−

t
RC (2.5)

The maximum occurs at t = 0, therefore

Vmax

Q
=

K

C
(2.6)

Now let us consider the noise transfer function. It is

Vout

VN
=

1

RC
· 1

s + 1
RC

(2.7)

v2
N,RMS = 4kTR∆f (2.8)

∆f =
1

2πRC
(2.9)

From equation 2.7 we can see that at low frequencies Vout

VN
= 1. Then the above

relationships yield that the noise is independent of R and inverse with the square root

of C;

vout,RMS =

√
4kTR

1

2πRC
=

√
2
π
kT√
C

(2.10)

Minimum Detectable Signal (MDS), QC , to be the amount of charge (current

pulse area) which would produce a voltage waveform with a maximum value equal to

the RMS value of the thermal noise. For the simple system discussed above, we can

make the voltages in equations 2.6 and 2.10 equal in order to calculate the MDS:

QC =
C

K
·

√
2
π
kT√
C

=

√
2
π
kT

K
·
√

C (2.11)

The lower the MDS, the greater the sensitivity of the system. Therefore, lower C

means higher sensitivity. To express this relationship in terms of the bandwidth, we

can use equation 2.9, to obtain
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Figure 2-3: More Complex System Circuit Diagram

QC =

√
2
π
kT

K
· 1√

R2π∆f
=

1

πK
·

√
kT√

R∆f
(2.12)

This means that for this simple example the relationship QC ∝ 1√
∆f

holds. I

believe that the same relationship holds for any system with a similar structure at

the front end, i.e. the faster the system, the more sensitive it is. In order to confirm

this claim, let us consider another example of a system based on the structure of

one of the current sensors. The circuit diagram is shown on figure 2-3. A parallel-

RC current sensor is loaded with a filter/amplifier of infinite input impedance. For

simplicity, I have assumed that the values of the sensor elements are such that the real

poles of its PZ configuration are a factor of 3 apart. (See figure 2-4.) The other two

complex poles on that figure are contributed by the amplifier/filter, whose transfer

function is shown below:

Vout

Vin
=

G

s2 + 2ζωns + ω2
n

=
G

s2 + 2ps + 2p2
(2.13)

ζ =
1√
2

ωn =
√

2p

In this transfer function p is a parameter defined on figure 2-4. The pole-zero

configuration shown on that figure is the one shown on figure 1-6. The bandwidth of

this system is now characterized by the parameter p.

The signal and noise transfer functions of the system respectively are:
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Figure 2-4: More Complex System Pole-Zero Diagram

Vout

Iin
=

KG

C
· s

(s + p)(s + 3p)(s2 + 2ps + 2p2)
(2.14)

and
Vout

VN
=

G

RC
· s

(s + p)(s + 3p)(s2 + 2ps + 2p2)
(2.15)

First, let us calculate the maximum voltage per unit charge. To do that, we need

to take the inverse Laplace transform of equation 2.14. It can be broken up using

partial fractions.

Vout

Iin
=

KG

C
(
− 1

2p2

s + p
+

3
10p2

s + 3p
+

1
5p2 s + 4

5p

s2 + 2ps + 2p2
) (2.16)

v(t) =
KG

C
[− 1

2p2
e−pt +

3

10p2
e−3pt +

√
10

5p2
e−ptsin(pt + φ)] (2.17)

φ = 18.4o

In order to locate the maximum of this waveform we must set its derivative to

zero. This leads to the following transcendental equation:
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p

2p2
e−pt − 9p

10p2
e−3pt +

√
10

5p2
[−pe−ptsin(pt + φ) + pe−ptcos(pt + φ)] = 0 (2.18)

This equation simplifies to:

1

2
− 9

10
e−2pt +

√
10

5
[−sin(pt + φ) + cos(pt + φ)] = 0 (2.19)

This equation will have a solution in terms of pt, i.e. pt = [const.]. This means

that when the value for t is substituted in equation 2.17, the latter will take the form:

Vmax =
KG

Cp2
[constant] (2.20)

or

Vmax ∝ 1

Cp2
(2.21)

Of course, the gain of the amplifier/filter is not independent of p and therefore

the equation above cannot be used to determine how the maximum voltage depends

on the bandwidth. This equation is useful only to determine the relative effect of p,

characterized by the MDS.

In that last formula, C and p are not independent. The current sensor is char-

acterized by three values, which govern its frequency characteristics: R, C and L.

Since thermal noise depends on R, and we are trying to estimate the effect of the

bandwidth only, R must be kept constant. We therefore have two degrees of freedom,

C and L, to satisfy two constraints: the two poles at −p and −3p. This means that

for a given R, the parameter p completely determines C. From equations 2.14 and

2.15 one can see that the characteristic equation of the current sensor is

s2 + 4ps + 3p2 = 0 (2.22)

If we match this equation to equation 1.14, we get:
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1

p2
= 3LC

L

C
=

16R2

3

C =
1

p4R

When we substitute this last relationship into equation 2.21, we get:

Vmax ∝ C ∝ 1

p
(2.23)

Now let us look at how noise is affected by p. The bandwidth is proportional to

p. For simplicity I shall assume that:

∆f =
p

2π
(2.24)

When the magnitude of the transfer function 2.15 is evaluated at s = jp, we get:

| jp

(jp + p)(jp + 3p)(−p2 + 2jp2 + 2p2)
| ∝ 1

p3
(2.25)

When all relationships, 2.15, 2.24, and 2.25, are considered, we get:

vout,RMS ∝ 1

C
· 1

p3
·
√

∆f ∝ 1

p3/2
(2.26)

This, combined with equation 2.23 to eliminate C, gives us the relationship which

was expected:

QC ∝ 1√
p
∝ 1√

∆f
(2.27)

The conclusion that must be drawn from these two examples, is that for a fixed

R at the front end, the signal-to-noise ratio is better for a faster system, with a

proportionality relationship as shown on equation 2.27. This seems counterintuitive,

since thermal noise increases with a wider bandwidth. However, in this application

the signal-to-noise ratio is higher for a faster system, because the output voltage is

inversely proportional to the integrating capacitance, (i.e. directly proportional to
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the bandwidth), whereas the RMS value of the noise increases only with the square

root of the bandwidth.

Of course there are other limitations on the speed of the system, such as the

requirements of the digitizer and they must be considered too when the speed of the

response is determined.

2.3 Capacitive Loading

In the two previous sections I showed that a system’s signal-to-noise ratio depends

only on the bandwidth and on the transformer ratio K, (if the noise-generating re-

sistor R is kept constant), and if these are kept constant, the details of the system

implementation are not important. Suppose we have a series-RC sensor with a load

capacitance CL. Even when CL = 0 the sensor has a limited bandwidth. In this

chapter I will find the maximum value of CL which would not significantly slow down

the system.

The characteristic equation of this system is

(s + p)(s2 + 2ζωns + ω2
n) = s3 + (p + 2ζωn)s

2 + (ω2
n + 2ζωnp)s + pω2

n = 0 (2.28)

where p here is the real pole, and ζ and ωn are the damping ratio and natural frequency

of the complex pair. If CL is small (compared to C), then

p ≈ 1

(RL ‖ R)CL
p ≈ RL + R

RLRCL
(2.29)

If equations 1.13 and 2.28 are compared, we can see that

pω2
n =

1

RCCLL
ω2

n =
RL

RL + R
· 1

LC
(2.30)

At this approximation, CL does not affect ωn, i.e. the bandwidth. To see exactly

how large CL can get before it significantly reduces the speed of the response, we

must tabulate some values for a specific example.
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CL, pF Complex Pair, 106s−1 ζ Real Pole, 106s−1

0 1.43 ± 0.87j 0.854 ∞
100 1.43 ± 0.87j 0.854 299
200 1.42 ± 0.89j 0.847 150
300 1.41 ± 0.90j 0.843 100
510 1.40 ± 0.91j 0.838 58.8
820 1.40 ± 0.93j 0.833 36.6

1000 1.38 ± 0.94j 0.826 30.0
1500 1.35 ± 0.98j 0.810 20.1
2200 1.32 ± 1.03j 0.788 13.8
2600 1.29 ± 1.05j 0.776 11.7
3300 1.24 ± 1.09j 0.751 9.43
4700 1.14 ± 1.14j 0.707 6.88
5100 1.10 ± 1.16j 0.688 6.45
7100 0.96 ± 1.19j 0.628 5.08

10000 0.78 ± 1.20j 0.551 4.22

Table 2.1: Dependence of PPD-102X Poles on the Load Capacitance

Out of all current sensors, I chose PPD-102X (see table 1.3), because it has the

highest value of K. A parallel-RC sensor typically would have a larger value for R,

which means a better signal-to-noise ratio, but these sensors also give rise to much

slower systems, and I believe on the whole PPD-102X would give rise to the most

sensitive system. In order to be certain of that, a theoretical system must be developed

based on a parallel-RC sensor, and then the two systems must be compared.

Consider the sensor PPD-102X, with circuit model values as shown in table 1.3,

loaded with 50Ω of active stage input impedance, and CL. Table 2.1 shows how

the complex pole pair, its damping ratio ζ , and the real pole, vary with CL. The

data in this table is plotted on figure 2-5. Logarithmic scale is used on all axes

except the damping ratio. One can see on this figure that the approximation used in

equation 2.29 is still valid for values of CL up to 7100pF .

Since the signal-to-noise ratio has a square-root dependence on the bandwidth, a

20% and a 10% deterioration of the bandwidth causes a 10% and a 5% deterioration

of the signal-to-noise ratio. The dependence of the latter on the load capacitance

is shown on figure 2-6. The 20% and 10% points are shown on figure 2-5 and they
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Figure 2-5: Dependence of PPD-102X Poles on the Load Capacitance
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Figure 2-6: Dependence of the Signal-to-Noise Ratio on the Load Capacitance

correspond to 4700pF and 2600pF of CL respectively. It is interesting to note that for

CL = 4700pF the damping ratio is 1√
2
, exactly as in the 450 Gaussian Amplifier. This

value corresponds to a 10% decrease of the signal-to-noise ratio. For these reasons it

is reasonable to take this value as the optimal choice for a loading capacitor.

The pole-zero configuration of the PPD-102X sensor, loaded with a 4700pF ca-

pacitor and input impedance of 50Ω is shown on figure 2-7. This will be used in the

next chapter as the basic front-end response. The amplifier/filter will accommodate

the existing pole-zero configuration to the most desirable system function.

A calculation of the minimum detectable signal of the so designed system is carried

out in Chapter 4, when the transfer function of the total system, including the filter,

is known.
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Figure 2-7: Pole-Zero diagram of PPD-102X Loaded with 4700pF and 50Ω
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Chapter 3

Waveform Shaping

The next stage in the development of the system is the amplifier. Everything that

happens at and after the first gain stage falls in this category. Thermal noise is not

a factor in this discussion, since thermal noise at the output is dominated by that

generated before the first preamplifier stage. The amplifier/filter stage can therefore

be fully described by its system function and Bode gain.

At this stage I shall take the front-end structure, developed in the previous chapter,

as given, and use its mathematical representation to design an appropriate system

function for the amplifier. Figures 1-6 and 1-7 show one good transfer function.

However, the system function of the current sensor, shown on figure 2-7, is significantly

different. It has an extra pole, an extra zero and lacks two real poles. In principle,

the zero could be cancelled first, but it is not clear at this point whether this is

really necessary. Since poles are easy to implement, I suggest a different strategy,

which entails adding a pole first and finding its most appropriate position. The

latter is found by using a numerical method 1 to calculate the impulse response and

investigating its characteristics. In this way the possibility of cancelling the zero is

not eliminated, as the pole may be placed at the same location.

1See appendix.
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Figure 3-1: Step and Impulse Responses with a Pole at −1.2 × 106: Underdamped

3.1 First Pole

Figure 2-7 shows the pole-zero configuration that is used as the basis for this calcula-

tion. By adding one more pole I am trying to find the configuration that will result

in the highest efficiency.

Let us start with a pole slightly faster than the real part of the complex pair.

The response, shown on figure 3-1, is clearly underdamped. We are looking for a

critically damped response, since it will last shorter. When the pole is positioned

right in between the complex pole pair, the response is still underdamped (figure 3-

2). Figures 3-3, 3-4, and 3-5 show one more underdamped and two overdamped

responses, for various positions of the pole. (See figure captions.)

It turns out that critical damping occurs with the pole at −1.05 × 106. The

response may be seen on figure 3-6. Figure 3-7 shows the impulse response of this

system on a different time scale, which makes reading off the graph of the parameters

needed in the calculation of the efficiency of this configuration easier.

This is the best solution with a single pole. The efficiency of this network is

E = 0.108, which is relatively low in comparison to the number characteristic of the
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Figure 3-2: Pole at −1.14 × 106: Underdamped

Figure 3-3: Pole at −1.10 × 106: Underdamped
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Figure 3-4: Pole at −0.9 × 106: Overdamped

Figure 3-5: Pole at −1.00 × 106: Overdamped
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Figure 3-6: Pole at −1.05 × 106: Critically Damped

Figure 3-7: Zoomed Impulse Response with a Pole at −1.05 × 106
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Figure 3-8: Two Poles at −1.05 × 106: Overdamped

model response, as discussed in section 1.3.3. Let us see then what kind of results

can be obtained when another pole is added.

3.2 Second Pole

The additional degree of freedom makes the optimization problem more difficult than

in the case of a single pole. At first let us start with the two poles on top of each

other and move them together. Figures 3-8, 3-9, 3-10, and 3-11 show the step and

impulse responses of such configurations, with the two poles positioned at interesting

locations, such as the optimum one-pole position, and in between the complex pole

pair. The first three configurations yield overdamped responses and the last one – an

underdamped one.
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Figure 3-9: Two Poles at −1.14 × 106: Overdamped

Figure 3-10: Two Poles at −1.30 × 106: Overdamped
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Figure 3-11: Two Poles at −1.50 × 106: Underdamped

Critical damping in the case of using two poles at the same location occurs at

−1.40×106, as illustrated on figures 3-12 and 3-13. The efficiency is E = 0.134, which

is much higher than that obtained by adding only a single pole. It is naturally so,

since adding another pole makes a much better approximation to the true Gaussian.

There may be other configurations of two poles, of different values, which will yield

a higher efficiency. Inspired by the pole-zero diagram of the Gaussian amplifiers, let

us try keeping one of the poles at −1.14 × 106, between the two complex poles, and

move the other one to reach critical damping. As seen on figures 3-14 and 3-15,

critical damping occurs when the second pole is at −2.20 × 106, with efficiency of

E = 0.136.

This is already an improvement. Following the same strategy, what happens if

the pole at 3 × (−1.14 × 106) = −3.42 × 106 is steady and the other one is being

moved until critical damping is achieved. The results are shown on figures 3-16 and

3-17. The efficiency in this case is down to E = 0.117 .

In this last example the critical damping occurred when the second pole was moved

to exactly the same value as when only a single pole was explored. (Figures 3-6 and

3-7) In the two-pole case, of course, the efficiency is much higher. Using this idea,
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Figure 3-12: Two Poles at −1.40 × 106: Critically Damped

Figure 3-13: Zoomed Impulse Response with Poles at −1.40 × 106
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Figure 3-14: Poles at −1.14 × 106 and −2.20 × 106: Critically Damped

Figure 3-15: Zoomed Impulse Response with Poles at −1.40 × 106 and −2.20 × 106
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Figure 3-16: Poles at −1.05 × 106 and −3.42 × 106: Critically Damped

Figure 3-17: Zoomed Impulse Response with Poles at −1.05 × 106 and −3.42 × 106
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Figure 3-18: Impulse Response with Poles at −1.05 × 106 and −2.00 × 106

let’s keep a pole at this very position, −1.05×106, and see what efficiency a critically

damped system with this basic configuration would display.

Two such systems are shown on figures 3-18 and 3-19. These figures do not show

the step response, but only the impulse response on two different time scales. The

efficiencies are respectively E = 0.130 and E = 0.125.

The last few configurations are not as efficient as the one shown on figures 3-14

and 3-15, although the difference is not very significant.

All of the waveforms discussed in this chapter are summarized in table 3.1. The

efficiency of each waveform is shown on figure 3-20. The table lists the number of the

figure, the values of the additional poles, the damping, the corresponding efficiency,

and the number on the bar chart shown on figure 3-20.

At this time it is reasonable to take the set of values on figures 3-14 and 3-15,

−1.14 × 106 and −2.20 × 106, as the optimum solution, because it has the highest

efficiency. The physical design of the amplifier stages should provide for some flex-

ibility of fine tuning of the two poles. The pole-zero diagram of the overall system,

as developed in this chapter, is shown on figure 3-21. It will be used in the physical

implementation of the amplifier. Figure 3-22 once again shows the impulse response
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Figure 3-19: Impulse Response with Poles at −1.05 × 106 and −4.00 × 106

Figure Poles Damping E Bar #

3-1 −1.20 × 106 Under 0.0716 1
3-2 −1.14 × 106 Under 0.0795 2
3-3 −1.10 × 106 Under 0.0781 3
3-4 −0.90 × 106 Over 0.0903 4
3-5 −1.00 × 106 Over 0.0994 5
3-6 −1.05 × 106 Critical 0.108 6
3-8 −1.05 × 106 and −1.05 × 106 Over 0.106 7
3-9 −1.14 × 106 and −1.14 × 106 Over 0.108 8
3-10 −1.30 × 106 and −1.30 × 106 Over 0.119 9
3-11 −1.50 × 106 and −1.50 × 106 Under 0.101 10
3-12 −1.40 × 106 and −1.40 × 106 Critical 0.134 11
3-14 −1.14 × 106 and −2.20 × 106 Critical 0.136 12
3-16 −1.05 × 106 and −3.42 × 106 Critical 0.117 13
3-18 −1.05 × 106 and −2.00 × 106 Critical 0.130 14
3-19 −1.05 × 106 and −4.00 × 106 Critical 0.125 15

Table 3.1: Summary of the Waveforms in Chapter 3
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Figure 3-20: Summary of the Efficiency of the Waveforms in Chapter 3
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Figure 3-21: Pole-Zero Diagram of the Overall System, i.e. Sensor and Filter

of this optimal system, and it also shows its frequency behaviour.

The possibility exists, of course, of adding more poles. With each additional pole

the system’s response will be closer to the gaussian derivative, in keeping with the

trend outlined in section 1.3.1. (A true gaussian requires an infinite number of poles.)

However, the cost of adding more filter stages does not justify the minor improvement

in the signal-vs-noise characteristics. This is why I chose to follow the design strategy

of the ORTEC gaussian amplifiers in the first place, represented by their pole-zero

configurations.
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Figure 3-22: Impulse Response and Bode Plot of the Overall System
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Chapter 4

Physical Implementation and

Measurements

In this chapter I consider the physical implementation of the system developed in the

previous two chapters. Its pole-zero diagram can be seen on figure 3-21. The overall

system consists of the following stages:

• Current Sensor. For reasons outlined in chapter 2 I have chosen sensor type

PPD-102X. It is loaded with a 4.7nF capacitor and the input impedance of the

preamplifier.

• Preamplifier. This stage is used to provide gain at the front end. In this way

the thermal noise of the subsequent filter stages will not significantly affect the

signal-to-noise ratio. I have considered using low-noise preamplifiers models

W500C or W40F. This choice is considered in more detail in section 4.2.

• Filter. This is a two-stage filter, adding the two poles discussed in the previous

chapter. Each of the two stages may be tuned independently. The output of

the second stage is the output of the whole system.

The circuit diagram of the system, together with a set of possible component

values, is shown on figure 4-1. It is important to calculate the sensitivity of this

system, represented by the previously defined quantity MDS (QC).
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Figure 4-1: Overall System Circuit Diagram

4.1 Sensitivity

In order to calculate the MDS of this system, we need two quantities: the RMS value

of the thermal noise voltage at the output, and the peak voltage at the output per

unit charge of current pulse area. In order to simplify the calculations, all gains of

the system are ignored, as they do not affect the signal-to-noise ratio.

The output-to-noise system function is obtained when the two new poles are added

to equation 2.3. The values obtained for the two poles in the previous chapter are:

p1 = 0.114 × 107 p2 = 0.220 × 107

Therefore the overall noise system function is:

Vout

VN
=

1

RCL
· s2

[s3 + ( 1
RCL

+ 1
RC

+ 1
RLCL

)s2 + ( 1
LCL

+ 1
RRLCCL

)s + 1
LRCCL

](s + p1)(s + p2)

(4.1)

To find the peak value in frequency of this transfer function, a numerical calcula-

tion of bode data is carried on, and then the results are read directly from the graph.
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Figure 4-2: Calculated Noise Transfer Function Bode Plots

The bode plot of this transfer function is shown on figure 4-2. Figure 4-3 shows the

peak of the magnitude plot in more detail on a different scale. When the pole-zero

configuration was entered into the program in order to calculate the data on these

figures, the Bode gain was set to 10−12, for a clearer plot. In order to be able to read

useful data from the plot, we must first convert equation 4.1 to standard Bode form.

Here is the result:

Vout

VN
=

LC

p1p2
·1012 10−12s2

[1 + (RC + L
RL

)s + (RLC
RL

+ LC + LCL)s2 + LRCCLs3](1 + s
p1

)(1 + s
p2

)

(4.2)

The braces enclose the system function entered for the numerical calculation of

the data on the Bode plots.

Since thermal noise generation depends on the bandwidth, I consider the band-

width to be limited by the frequency at which the magnitude has dropped 3dB be-

low its peak value. On figure 4-3 the peak is at point A, where the magnitude

is 10−0.0755. 3dB down form point A is point B, where the magnitude is down to

10−0.0755− 3
20 = 10−0.226. Point B occurs at frequency 106.413

2π
= 412kHz. Therefore the
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Figure 4-3: Calculated Enlarged Magnitude Bode Plot

value for the bandwidth is ∆f = 412kHz. The value of the magnitude at point B,

which should be substituted for the expression in braces in equation 4.2, is 10−0.226.

At this point we are ready to calculate the maximum value of Vout

VN
:

Vout

VN
(max) =

LC

p1p2
· 1012 · 10−0.226 = 2.82 × 10−14 (4.3)

The RMS value of the voltage at the output is, therefore:

VON =
√

4RkT∆f × Vout

VN

(max) = 2.32 × 10−20V (4.4)

The value so obtained is meaningful only in the calculation of the MDS, because

all gains were ignored.

Now we need to find Vout(max) per unit charge. The maximum value will be

read from the plot shown on figure 3-15. Since the data for the plot was entered in

standard Bode format, a conversion factor will be used, as in the procedures used

above. The maximum value on the plot is 477 × 109. Using equation 2.2, we get:

Vout

Q
(max) =

K

CL
· LRCCL

RCp1p2
· 477 × 109 = 2.08 × 10−6V/C (4.5)

The MDS can now be obtained by dividing equation 4.4 by equation 4.5:

64



QC =
2.32 × 10−20

2.08 × 10−6
= 11.2fC (4.6)

As discussed earlier, the minimum detectable current pulse area, which would

yield useful information, would have to be a few times larger than the so calculated

MDS.

4.2 Preamplifier

The preamplifier is the stage following the capacitively loaded current sensor. Its

input impedance serves as the load resistance of the current sensor. The preamplifier’s

function is to make any thermal noise generated in the stages following it insignificant

compared to the noise generated in the current sensor. Therefore the most important

requirement is that the preamplifier be as low-noise as possible and with significant

gain in the frequency band of interest.

The two preamplifiers available to me are models W40F and W500C. Both of

them have input and output impedance of 50Ω. They have gains of 46dB and 42dB

respectively. The major difference between them lies in their frequency response. I

shall consider each one separately.

4.2.1 Model W40F

This is a broad-band amplifier, with an estimated bandwidth of 300kHz to 40MHz.

While its high-frequency range of operation is not useful in this application, its low-

frequency roll-off may present a problem. Its step response is shown on figure 4-4 1.

It’s driven by a 50Ω signal generator and its output is also terminated at 50Ω.

This behaviour can be accurately described by a zero at the origin and a pole with

a time constant of 0.5µs. This configuration and its predicted step response may be

seen on figure 4-5. The predicted response matches the experimental one quite well,

thus confirming this simple model. The zero at the origin has an important advantage:

1The equipment used to take this and subsequent photographs is discussed in the appendix
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Trace Description Units

Top Output 500mV/smdiv
into 50Ω

Middle Drive 5mV/smdiv
into 50Ω

Bottom Drive 5mV/smdiv
into amp.

Sweep 100ns/smdiv

Figure 4-4: W40F Step Response

Im

0
Re-2x10 6

Figure 4-5: PZ Model and Predicted Step Response of W40F

the low-frequency roll-off is twice faster and therefore the amount of low-frequency

noise, generated by the ambient 60Hz background, is greatly attenuated. On the

other hand, it is in effect a differentiation and will change the shape of the waveform

at the output.

Since the extra pole and zero, introduced by the non-ideal preamplifier, change

the overall system function, the set of two extra poles, developed in the previous

chapter, do not yield the optimum configuration. Therefore I will try to see what

other filtering may work better if this preamplifier is used.

Figure 4-6 shows the step and the impulse responses of a system including the
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Figure 4-6: Calculated Step and Impulse Response of Current Sensor and W40F
Preamplifier. No Filtering

current sensor, capacitively loaded, and the preamplifier W40F. The response is ap-

proximately the derivative of what it should be, i.e. of that shown on figure 3-14,

which is due to the zero at the origin. As a first try we may try to cancel this zero by

adding a very slow pole. (A pole at the origin would be ideal, but it is not possible to

implement.) The result is shown on figure 4-7. The impulse response is close to what

we want, but the step response shows a slow tail. This is very undesirable, because

it causes progressively accumulating errors.

If we now try to add a faster pole instead, comparable with the other poles of the

system, we get the results shown on figure 4-8. The problem with this waveform is

that the peak of the impulse response occurs too early and the positive area is split in

two parts, of which only the first one is of importance. Therefore the peak represents

only a fraction of the energy of the pulse.

An attempt to slow the arrival of the peak, as compared to the total duration of

the waveform, is made by adding another pole (figure 4-9). Now the impulse response

starts at a lower slope and its peak arrives later.

A more efficient solution with the same idea is shown on figure 4-10, where by
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Figure 4-7: Responses with W40F and One Pole at −1 × 105

Figure 4-8: Responses with W40F and One Pole at −1 × 106
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Figure 4-9: Responses with W40F and Two Poles at −1 × 106

moving the poles critical damping is achieved. This is the best response that could

be achieved with W40F. The efficiency is really low, (E = 0.0734), but this is not the

only problem. As noted earlier, the peak value per unit input charge is low because

a smaller fraction of the energy has gone into the first peak.

This is why a better design would make use of the other preamplifier, W500C,

since the poles and zeros that it introduces may be compensated for in a later stage.

4.2.2 Model W500C

This amplifier’s frequency range is not as high as that of W40F. Its experimentally

measured step response, taken under the same conditions as the step response of

W40F, are shown on figures 4-11 and 4-12. The two pictures are taken at different

sweep rates.

The step response makes a step, whose rise time is comparable to that of the

signal generator and therefore negligible, and then proceeds to rise to its final value,

following an exponential. This behaviour occurs when a pole-zero pair is present,

with the pole having the longer time constant. (See equivalent circuit on figure 4-24.
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Figure 4-10: Responses with W40F and Two Poles at −2 × 106

Trace Description Units

Top Output 500mV/smdiv
into 50Ω

Bottom Drive 5mV/smdiv
into amp.

Sweep 50ns/smdiv

Figure 4-11: W500C Step Response (Fast Sweep)

Trace Description Units

Top Output 500mV/smdiv
into 50Ω

Bottom Drive 5mV/smdiv
into amp.

Sweep 500ns/smdiv

Figure 4-12: W500C Step Response (Slow Sweep)
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Cx = 0.1µF op. amp. LF356 R1 = 5kΩ (pot.)
R3 = 5.6kΩ R2 = 5kΩ (pot.)

C = 2.0nF

Figure 4-13: Compensation Stage Circuit Diagram

Neither of these are at the origin and may be compensated at a later stage. This

is the strategy I chose to use. The compensation stage for the W500C amplifier is

developed in the next section.

4.2.3 Compensation for W500C

The compensation stage must have a quick pole and a slow zero, each tuned indepen-

dently. This can be achieved by an amplifier, whose initial gain factor exponentially

decreases to a new value. The schematic diagram of one such configuration is shown

on figure 4-13. α and β stand for the position of the potentiometer gliders of R1 and

R2 respectively and take values from 0 to 1. If we assume the operational amplifier

is ideal, the transfer function of this stage would be:

Vout

Vin

=
αR1 + βR2

R1 + βR2

· 1 + (αR1 ‖ βR2)C1s

1 + (R1 ‖ βR2)C1s
(4.7)

The two degrees of freedom, α and β, let us position the pole and the zero so

that they match and cancel those of the W500C amplifier. The position of the pole

depends only on β, so it should be set first. I physically implemented this stage,

using the component values listed on the figure. The measured step response of this
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Trace Description Units

Top Output 2V/smdiv
(unloaded)

Bottom Drive 500mV/smdiv
into stage

Sweep 500ns/smdiv

Figure 4-14: Compensation Stage Step Response

Trace Description Units

Top Output 2V/smdiv
(unloaded)

Bottom Drive 5mV/smdiv
into W500C

Sweep 500ns/smdiv

Figure 4-15: Compensated W500C Step Response

compensation stage is shown on figure 4-14. It manifests the expected behaviour,

with one notable exception: its finite rise time. This is due to the presence of another

pole, introduced by the non-ideal operational amplifier. Although LF356 is a fast

amplifier, it is frequency compensated and does introduce another pole. The effect of

this extra pole will be discussed later.

The tuning of the compensation stage involves watching the step response of the

two stages, the preamplifier and the compensation stage, and adjusting the values of

the potentiometers so that the output is as close to a step as possible. After tuning,

the experimental step response of the compensated W500C is shown on figure 4-15.

This behaviour is that of a single-pole first-order system, whose time constant is

determined by the rise time of the step.

Now let us look at the overall system created so far. At this point I would like to

test what the output of the compensation stage would yield when excited by a step

of current through the current sensor. The experimental setup used to take these

measurements is shown on figure 4-16. The signal generator creates a step of voltage.
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Coax Cable

Sig.
Gen.

4.7nF

50

To oscillioscope

W500C Comp.

PPD102X

Figure 4-16: Experimental Setup for Figures 4-17, 4-19 and 4-21

Trace Description Units

Top Output 1V/smdiv
(unloaded)

Middle Output 500mV/smdiv
into 50Ω

Bottom Drive 5mV/smdiv
through sensor

into 50Ω

Sweep 500ns/smdiv

Figure 4-17: PPD-102X and Non-Compensated W500C Step Response

After passing through the coil of the current sensor, this signal terminates into 50Ω at

one of the inputs of the oscilloscope (a matched load). The current through the coil

is therefore directly proportional to the voltage registered by the oscilloscope, with a

proportionality constant of (50Ω)−1.

Figure 4-17 shows what the step response of the system is if no compensation is

used, i.e. only the capacitively loaded PPD-102X and W500C. Both the unloaded

and the 50Ω-load cases are shown. Both traces manifest a slowly decaying tail, as

expected. The tail decays at the rate determined by the pole of the W500C amplifier.

After the compensation stage is added, however, the long tail is gone. The exper-

imental step and impulse responses of this system now are shown on figure 4-19. The

step response shown on this figure is measured using the setup shown on figure 4-

16. The impulse response, however, requires a change in the drive circuitry. The line
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Gen. 50

PPD102X100nF
50 Ohm

etc.

etc.

Figure 4-18: Modified Experimental Setup Used to Measure Impulse Response

coming from the pulse generator is terminated into 50Ω prior to the current sensor. A

series 100pF -capacitor shapes the pulse through the sensor, which is then terminated

into 50Ω at the oscilloscope. Figure 4-18 shows this setup modification.

In order to compare how this system’s response differs from the numerically calcu-

lated one, the latter is shown on figure 4-20. It does not include the pole introduced

by the slow operational amplifier. Therefore the compensated W500C is assumed to

be pure gain and the only poles and zeros are those introduced by the loaded current

sensor.

There are two major differences between the predicted and the experimental re-

sponses:

• At t = 0, the measured step response starts up with zero slope, unlike the

predicted response, which starts up with a finite positive slope. Analogously,

the measured impulse response has a finite rise time, whereas on the predicted

impulse response the rise time is zero. Both of these phenomena are due to the

extra fast pole, due to the slow operational amplifier in the compensation stage.

The numerical calculation does not take it into account.

• Theoretically the impulse response should terminate after it goes below zero.

The experimental response, however, shows one more oscillation of low, but

visible, magnitude. A similar oscillation may be seen in the step response. In

order to find where in the system this problem arises, I compare the responses

shown on figure 4-19 to those on figure 4-21. The latter are taken when the
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Trace Description Units

Top Output 500mV
(unloaded) /smdiv

Bottom Drive 10mV
through sensor /smdiv

into scope

Sweep 500ns
/smdiv

Trace Description Units

Top Output 500mV
(unloaded) /smdiv

Bottom Drive 100mV
through sensor /smdiv
(series cap.)

Sweep 500ns
/smdiv

Figure 4-19: Step and Impulse Response of PPD-102X and Compensated W500C

current sensor is loaded with the 4.7nF -capacitor and a discrete 50Ω-resistor,

with no amplifiers. These agree perfectly with the predicted responses, shown

on figure 4-20. This means that the reason the responses ring when the amplifier

stages are added is that the input impedance of the W500C preamplifier does

not look like 50Ω at all times. It has some reactance, which interferes with the

system function of the loaded current sensor.

The first problem is not very significant, since the extra pole is of a lower time

constant than the other poles in the system and may in fact be used in the filtering

stage to help shape the waveform for maximum efficiency. The second problem may

probably be fixed by finding a new optimum value for the loading capacitor at the

front end.
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Figure 4-20: Predicted Step and Impulse Response of Loaded PPD-102X

Trace Description Units

Top Output 50mV
into 50Ω /smdiv

Bottom Drive 500mV
through sensor /smdiv

into scope

Sweep 500ns
/smdiv

Trace Description Units

Top Output 5mV
into 50Ω /smdiv

Bottom Drive 1V
through sensor /smdiv
(series cap.)

Sweep 500ns
/smdiv

Figure 4-21: Step and Impulse Response of PPD-102X Loaded with 50Ω
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4.3 Final Design

In the previous section I discussed the effect of the extra pole, which the frequency

compensated operational amplifier of the compensation stage adds to the overall

system transfer function. Because of its presence I choose to add only one more stage

to the filter, in order to make the physical design simpler.

The circuit diagram of this last stage is shown on figure 4-22. This configuration

adds a single pole, whose position may be altered by the value of R5. R4 is a gain

control. This stage, of course, is also used to provide gain. The operational amplifier

is the same as in the previous stage and it will add another fast pole. Assuming an

ideal operational amplifier, the transfer function of this stage is:

Vout

Vin
= − R5

R4(1 + R5C2S)
(4.8)

Figure 4-23 shows the experimental step and impulse response of the overall sys-

tem. Its total circuit diagram is shown on figure 4-24. The W500C amplifier and

the compensation stage together implement a gain stage. Therefore this particular

design is specific to the use of this preamplifier. Figure 4-25 shows the structure of the

system built in its more generic form. There the combination of these two stages is

represented with a single gain stage introducing only one pole due to the operational

amplifier of the compensation stage.

4.4 Test of Sensitivity

The final experimental test of the physically implemented system is a test of its

sensitivity. Its response to a pulse of current is shown on figure 4-23. The question is

how small this pulse of current can be, with the output waveform still distinguishable

against the background of thermal noise.

The experimental setup is shown on figure 4-26. The signal generator has built-in

attenuation. The signal is further attenuated by a series of 50Ω coaxial cable attenu-

ators (20dB + 6dB = 26dB, i.e. 1
40

) and then terminated at 50Ω. The oscilloscope is
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Vout

-

+

Cx R4

C2

R5

comp.

Cx = 0.1µF C2 = 200pF R4 = 1kΩ (pot.)
(coupling) op. amp. LF356 R5 = 5kΩ (pot.)

Figure 4-22: Circuit Diagram of the Last Filter Stage

Trace Description Units

Top Output 1V
/smdiv

Bottom Drive 10mV
through sensor /smdiv

into scope

Sweep 500ns
/smdiv

Trace Description Units

Top Output 1V
/smdiv

Bottom Drive 100mV
through sensor /smdiv
(series cap.)

Sweep 500ns
/smdiv

Figure 4-23: Step and Impulse Response of the Overall System
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K L

C

R

Vout
CL

Ri Ro

G

Cx

R3

C1

R1

R2

Cx R4 R5

C2

+

-

-

+

s+z
s+p

PPD-102X W500C PC Board

K = 1/3 = 0.33 CL = 4.7nF C1 = 2.0nF CX = 0.1µF
L = 33µH RL = Ri = 50Ω R1 = 5kΩ(pot.) C2 = 200pF
C = 3.6nF Ro = 50Ω R2 = 5kΩ(pot.) R4 = 1kΩ(pot.)
R = 100Ω G = 42dB R3 = 5.6kΩ R5 = 5kΩ(pot.)

Figure 4-24: Implemented Circuit Diagram of the Overall Implemented System

K L

C

R

Vout
CL

Ri

Cx R4 R5

C2

-

+

 1
s+p’

PPD-102X Gain Filter

K = 1/3 = 0.33 CL = 4.7nF CX = 0.1µF
L = 33µH RL = Ri = 50Ω C2 = 200pF
C = 3.6nF R4 = 1kΩ(pot.)
R = 100Ω R5 = 5kΩ(pot.)

Figure 4-25: Generic Circuit Diagram of the Overall Implemented System
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Coax Cable

Alluminium Foil
Shielding

Sig.
Gen. 26 dB 50

attn. term

8pF

short

PPD102X

power

W500C PC Board

4.7nF

To bottom trace
of oscilloscope

To top
trace

Figure 4-26: Experimental Setup for the Sensitivity Measurement

connected before the attenuators, because after the attenuation the signal is too low.

The so attenuated step of voltage charges up the 8pF series capacitor and in doing

so causes a small amount of charge to go through the current sensor. The output of

the filter is registered by the top trace of the oscilloscope. Aluminium foil is used to

shield the current sensor and other sensitive elements from external noise. All power

connections are properly filtered locally using 10Ω series resistors and 0.1µF ceramic

bypass capacitors.

The minimum pulse of current is shown on figure 4-27. The drive makes a 600mV

step. Taking into account the 26dB attenuation, the area of the current pulse is:

Q =
600mv

40
× 8pF = 120fC (4.9)

As expected, this is a value approximately ten times larger than the calculated

value of the MDS. (See equation 4.6.) A slower sweep rate was used in taking this pic-

ture, because it shows the thermal noise fluctuations more clearly. This experimental

measurement confirms the expectations of the theoretical design.
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Trace Description Units

Top Output 5mV/smdiv
(unloaded)

Bottom Drive 5mV/smdiv
before attn.

Sweep 10µs/smdiv

Figure 4-27: Experimental Sensitivity Measurement
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Chapter 5

Conclusions

In this thesis I design an analog system, which responds with an appropriate waveform

to a pulse of current on the power line. My design uses limited resources in terms of

what kind of current sensors and preamplifiers are available. I try to achieve the best

performance with these resources.

The design developed in this work meets all specifications stated in the intro-

duction. The measured sensitivity of the system, discussed at the end of Chapter 4,

indicated that a charge of 120fC is well distinguishable against the background noise.

This experimental value agrees very well with the theoretically calculated minimum

detectable signal of 11.2fC. The design aims at the best attainable signal-to-noise

ratio and both the theoretical and experimental data confirm that the sensitivity of

the system is adequate, knowing that partial discharges are in the picocoulomb range.

The experimental measurement of the impulse response follows the theoretical

predictions. The waveform satisfies all requirements imposed by the digitizer. Its

efficiency (E = 0.136), as defined in the introduction, is the highest out of the bipolar

wave shapes presented in this work. It is lower than that of the perfect gaussian,

but the latter lies entirely above zero, whereas this system is purposefully chosen to

possess a bipolar response.1

The pole-zero configuration is centered around a dominant pole at −1.14 × 106,

1The response must integrate to zero. See Chapter 1.
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allowing for a repetition rate of 220kHz. This also meets the specifications.

The zero at the origin, introduced by the inductive coupling of the current sensor

to the line, acts to reject lower frequencies. This is a quality of the transfer function

which aids in the elimination of external noise, especialy 60Hz and harmonics.

Although there are many ways in which this design may be improved, it does meet

the goals of the work. The experimental testing confirms the theory. The performance

of the physically implemented system is at the expected level.
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Appendix A

Software and Hardware Tools

A.1 Software

CLASCON “CLASCON”, (Classical Control Systems Analysis), is a program de-

signed to analyze classical control systems. It focuses on analyzing feedback control

systems. The program requires the definition of the open loop transfer function, de-

termined by its pole-zero configuration and Bode gain. The program is capable of

performing time-domain and frequency-domain analyses on the open-loop and the

closed-loop systems.

I this thesis work I use this program to calculate the time-domain impulse and

step responses of systems characterized by their pole-zero configurations. I also use

it to calculate Bode data for such systems. All figures showing calculated step and

impulse responses of various systems have been created with the help of CLASCON.

MAPLE “Maple” performs numerical and symbolic computations in addition to

having extensive graphics capabilities. I use this program to plot the functions shown

on figure 1-3 and 1-1.

Other Software Other software tools used in creating graphs and figures, and in

general formatting include ProChart, IDraw, Xim, LaTeX.
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A.2 Hardware

The oscilloscope I use is Tektronix 7633, with modules 7A16A, 7A26, 7B10. The

photographs are taken on 667 Polaroid film.

The signal generator is ORTEC 419 Precision Pulse Generator. It has built-in

attenuation and a 50Ω-output.

All coaxial cable is RG223/U, with a line impedance of 50Ω. I use 50Ω termina-

tions and attenuators meant for use with 50Ω coaxial lines and many BNC connectors,

angles, T-junctions.

The power supply used to power the W500C preamplifier and the custom-made

printed circuit board is Global Specialties, 1310.
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